The roles of potassium currents in Drosophila flight muscles.

نویسندگان

  • T Elkins
  • B Ganetzky
چکیده

The roles of different K+ currents in regulating the generation and waveform of action potentials in Drosophila dorsal longitudinal flight muscles (DLMs) were examined in current-clamp experiments. In response to depolarizing current, DLMs displayed an initial transient rectification of the electronic potential lasting for up to hundreds of milliseconds. This delay in excitation was followed by oscillations or graded spikes that finally gave way to sharply rising spikes. Previous voltage-clamp studies of DLMs have revealed an inward Ca2+ current and at least three K+ currents: IA and IK, which are voltage-dependent, and IC, which is Ca2+ dependent. IA and IC are early inactivating currents, while IK is a slow, noninactivating current. In mature adults, selective elimination of IA either with Shaker (Sh) mutations or with 4-aminopyridine (4-AP), had no effect on spike duration or on the delay in excitation. In contrast, when IC was specifically eliminated with the slowpoke (slo) mutation, there was no delay before excitation, the amplitude of the spikes was significantly increased, and the spike duration was increased by 10-fold. Similar results were obtained by reducing IC in normal muscle by intracellular injections of EGTA or by use of low Ca2+ saline. Furthermore, DLM spikes evoked in slo by stimulation of the motorneuron were also broadened, suggesting that IC functions in a similar manner during normal flight as in current-clamped muscles. Elimination of IK along with IA and IC in saline containing tetraethylammonium or Ba2+ resulted in further prolongation of the DLM spike. In Ba2+ saline, there was an additional increase in spike amplitude as well. We conclude that in mature adults, IC, rather than IA, plays the major role in repolarization of DLM spikes and in the delay before excitation.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shaker and Shal mediate transient calcium-independent potassium current in a Drosophila flight motoneuron.

Ionic currents underlie the firing patterns, excitability, and synaptic integration of neurons. Despite complete sequence information in multiple species, our knowledge about ion channel function in central neurons remains incomplete. This study analyzes the potassium currents of an identified Drosophila flight motoneuron, MN5, in situ. MN5 exhibits four different potassium currents, two fast-a...

متن کامل

A Drosophila mutation that eliminates a calcium-dependent potassium current.

A mutation of Drosophila, slowpoke (slo), specifically abolishes a Ca2+-dependent K+ current, IC, from dorsal longitudinal flight muscles of adult flies. Other K+ currents remain normal, providing evidence that IC is mediated by a molecularly distinguishable set of channels. The pharmacological properties of IC are similar to those of Ca2+-dependent currents in some vertebrate cells. The muscle...

متن کامل

Analysis of repolarization of presynaptic motor terminals in Drosophila larvae using potassium-channel-blocking drugs and mutations.

In Drosophila melanogaster muscles and neuronal cell bodies at least four different potassium currents have been identified whose activity shapes the electrical properties of these cells. Potassium currents also control repolarization of presynaptic terminals and, therefore, exert a major effect on transmitter release and synaptic plasticity. However, because of the small size of presynaptic te...

متن کامل

Genetic analysis of Drosophila neurons: Shal, Shaw, and Shab encode most embryonic potassium currents.

In this study, we perform the first genetic analysis of K+ currents in Drosophila embryonic neurons revealing the identity of the currents present. Unlike muscles, where the presence of Shaker is obvious, Shaker currents are not detectable in these neurons. In contrast, we show that Shal is as important in these neuronal cell bodies as Shaker is in muscles. Only three single-channel currents we...

متن کامل

The conserved transcription factor Mef2 has multiple roles in adult Drosophila musculature formation.

Muscle is an established paradigm for analysing the cell differentiation programs that underpin the production of specialised tissues during development. These programs are controlled by key transcription factors, and a well-studied regulator of muscle gene expression is the conserved transcription factor Mef2. In vivo, Mef2 is essential for the development of the Drosophila larval musculature:...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 1988